UNIVERSIDAD NACIONAL DEL CENTRO DEL PERÚ

FACULTAD DE AGRONOMÍA

CAPACIDAD DE ESTABLECIMIENTO Y SUPERVIVENCIA DE POBLACIONES DE PAPA EN COMPETENCIA CON LA FLORA PIONERA EN TRES LOCALIDADES

TESIS

PRESENTADA POR LA BACHILLER:

MEZA RETAMOZO, KATHERIN PAOLA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO AGRÓNOMO

MANTARO - PERÚ

2013

ASESOR:

Ing. GUSTAVO SANTIAGO OSORIO PAGÁN (UNCP)
Ph. D. STEF DE HAAN (CIP)

PATROCINADOR:

Centro Internacional de la Papa

Ph. D. STEF DE HAAN

A Dios que en su infinita caridad me ha permitido cumplir con esta meta.

A mi mami, Haydeé, por su cariño, ejemplo y apoyo incondicional en todo momento y a mi abuelito, José Retamozo que en su memoria le dedico esta tesis.

A José Alberto y a mis preciosos hermanos José Raúl y Mariana Lucía, que en todo momento desprenden un cariño genuino y sincero, en conjunto son una pieza fundamental en mi vida y en mis objetivos y definitivamente a todas aquellas personas que me apoyaron e hicieron posible la realización de este trabajo.

AGRADECIMIENTO

En el presente trabajo dejo constancia de mi eterno agradecimiento a un gran número de personas por su colaboración:

Al Centro Internacional de la Papa y a todas las personas que forman parte de esta institución, A todos los amigos de la División 3, que me brindaron un apoyo desinteresado y no escatimaron esfuerzos para la planificación, establecimiento, desarrollo y culminación con éxito de esta tesis.

Al Dr. Stef De Haan quien deposito su confianza y me brindó la oportunidad de realizar esta tesis de quien quedare eternamente agradecida.

A la Dra. María Scurrah por sus valiosos conocimientos y apoyo en todo momento.

Al Ing. Carolina Bastos Zúñiga por sus consejos, apoyo continuo y definitivamente por su amistad sincera.

A mi asesor el Ing. Gustavo Osorio Pagán, quien me brindó su apoyo y colaboración en el desarrollo del presente trabajo.

Al Ing. Felipe De Mendiburu por sus valiosos consejos estadísticos.

A todos los docentes de la Facultad de Agronomía, porque gracias a su apoyo y guía he llegado a realizar uno de mis más grandes anhelos de mi vida, fruto del inmenso apoyo y confianza que en mí se depositó por el cual viviré eternamente agradecido.

Finalmente un agradecimiento a todos mis amigos que de una u otra forma participaron en el desarrollo de esta investigación y me brindaron su apoyo y su amistad, muchas gracias de corazón.

CONTENIDO

		Pág.	
Prese	entación	XV	
Resu	Resumen		
Intro	Introducción		
I	REVISIÓN BIBLIOGRÁFICA	01	
1.1	Marco conceptual	01	
1.2	Marco teórico	06	
1.2.1	El cultivo de papa en el Perú	06	
1.2.2	Origen, distribución y difusión	07	
1.2.3	Flujo de genes	09	
1.2.4	Las malezas	11	
1.2.5	Estrategias adaptativas de las malezas	14	
1.2.6	Competencia entre cultivo y malezas	15	
1.2.7	Malezas en el cultivo de papa	18	
1.2.8	interacción genotipo x medio ambiente	19	
1.3	Variedades en estudio	19	
1.3.1	Variedad control	19	
1.3.2	Material mejorado B1C5	20	
1.3.3	Descripción de híbridos interespecíficos	21	
1.3.4	Variedades nativas	23	
1.3.5	Variedades semi cultivadas	24	
1.3.6	Semilla botánica o sexual	24	
1.4	Regresión y correlación	25	
1.5	Marco referencial	26	
II	MATERIALES Y MÉTODOS	28	
2.1	Lugar de Ejecución	28	
2.2	Material genético	29	
2.3	Datos meteorológicos	32	
2.4	Análisis de suelos	37	
2.5	Metodología de la evaluación	39	
2.5.1	universo de la investigación	39	
2.5.2	Características del experimento	39	

2.5.3	Croquis experimental	40
2.6	Materiales y equipos utilizados	43
2.7	Conducción del experimento	43
2.7.1	Manejo de campo	44
2.8	Evaluaciones registradas	44
2.8.1	Variables climáticas	44
2.8.2	Variables agronómicas	45
2.9.	Procesamiento de datos	46
Ш	RESULTADOS Y DISCUSIONES	52
3.1	Regresión y correlacione polinomial simple de los componentes	
	de sobrevivencias	52
3.1.1	Regresión y correlación polinomial de la cobertura – con maleza	52
3.1.2	Regresión y correlación polinomial de las flores – con maleza	58
3.1.3	Regresión y correlación polinomial de las bayas – con maleza	63
3.1.4	Regresión y correlación polinomial de la cobertura – sin maleza	66
3.1.5	Regresión y correlación polinomial de las flores – sin maleza	72
3.1.6	Regresión y correlación polinomial de las bayas – sin maleza	76
3.2	Efecto del ambiente sobre la sobrevivencia – análisis AMMI	81
3.2.1	Análisis en función al número de tallos - con maleza	81
3.2.2	Análisis en función al número de tallos - sin maleza	86
3.3	Análisis en función al número de tubérculos	92
3.4	Análisis por series de tiempo utilizando el modelo matemático	
	arima (modelos autorregresivos integrados de medias móviles)	95
3.4.1	Materiales genéticos en el ambiente de Huancayo - con malezas	96
3.4.2	Materiales genéticos en el ambiente de Huancayo - sin malezas	99
3.4.3	Materiales genéticos en el ambiente de Huánuco - con malezas	101
3.4.4	Materiales genéticos en el ambiente de Huánuco - sin malezas	103
3.4.5	Materiales genéticos en el ambiente de Yauyos - con malezas	105
3.4.6	Materiales genéticos en el ambiente de Yauyos - sin malezas	107
3.5	Análisis de la biodiversidad en las malezas	111
3.5.1	Índice de riqueza especifica de Margalef	111
3.5.2	Índice de Simpson	112
IV.	CONCLUSIONES	117
٧.	RECOMENDACIONES	120

VI.	BIBLIOGRAFÍA	121	
	ANEXOS	127	,

RELACIÓN DE CUADROS

Cuadro 1	Especies cultivadas de papas y equivalencias	
	taxonómicas	09
Cuadro 2	Producción y viabilidad de semillas de algunas	
	malezas	13
Cuadro 3	Listado de los 36 híbridos con su respectivo número	
	de tratamiento, número CIP, Forma de multiplicación y	
	la cruza respectiva	29
Cuadro 4	Colecciones de las papa Araq	31
Cuadro 5	Colección de la semilla sexual de las papas nativas	32
Cuadro 6	Precipitación pluvial (ml) de 3 ambientes	33
Cuadro 7	Humedad relativa (%) de 3 ambientes	34
Cuadro 8	Temperatura (C°) de 3 ambientes	35
Cuadro 9	Análisis de suelo de los campos Huancayo, Huánuco y	
	Yauyos	37
Cuadro 10	Croquis general de los tres ambientes	42
Cuadro 11	Análisis de variancia AMMI	48
Cuadro 12	Regresión y correlación polinomial simple entre la	
	cobertura y la sobrevivencia en los tres ambientes en	
	presencia de las malezas	56
Cuadro 13	Regresión y correlación polinomial simple entre el	
	número de flores y la sobrevivencia en los tres	
	ambientes en presencia de las malezas	61
Cuadro 14	Regresión y correlación polinomial simple entre el	
	número de bayas y la sobrevivencia en los tres	
	ambientes en presencia de las malezas	65
Cuadro 15	Regresión y correlación polinomial simple entre la	
	cobertura y la sobrevivencia en los tres ambientes sin	
	la presencia de las malezas	71
Cuadro 16	Regresión y correlación polinomial simple entre el	
	número de flores y la sobrevivencia en los tres	
	ambientes sin la presencia de las malezas	75
Cuadro 17	Regresión y correlación polinomial simple entre el	

	número de bayas y la sobrevivencia en los tres	
	ambientes sin la presencia de las malezas	79
Cuadro 18	Análisis AMMI con respecto al número de tallos de 56	
	genotipos de papa evaluados en la presencia de las	
	malezas en 3 ambientes durante el periodo diciembre	
	2010 hasta abril 2012	81
Cuadro 19	Número promedio de tallos de 56 genotipos de papa	
	evaluados en 3 ambientes y valores de las	
	coordenadas de los dos primeros componentes	
	principales para genotipos y ambientes	84
Cuadro 20	Análisis AMMI con respecto al número de tallos de 56	
	genotipos de papa evaluados sin la presencia de las	
	malezas en 3 ambientes durante el periodo diciembre	
	2010 a abril 2012	86
Cuadro 21	Número promedio de tallos de 56 genotipos de papa	
	evaluados en 3 ambientes	89

RELACIÓN DE GRÁFICOS

Gráfico	1	Relación entre rendimiento y la presencia de malezas	
		por diferentes períodos durante el crecimiento de	
		cultivo	17
Gráfico	2	Precipitación pluvial (ml) de tres ambientes	33
Gráfico	3	Humedad relativa (%) de tres ambientes	35
Gráfico	4	Temperatura (C°) del ambiente Huánuco	36
Gráfico	5	Temperatura (C°) del ambiente Huancayo	36
Gráfico	6	Temperatura (C°) del ambiente Yauyos	37
Gráfico	7	Regresión y Correlación polinómica entre la cobertura-	
		sobrevivencia - con maleza	52
Gráfico	8	Regresión y correlación entre el número de flores-	
		sobrevivencia - con maleza	58
Gráfico	9	Regresión y correlación entre el número de bayas-	
		sobrevivencia - con maleza	63
Gráfico 1	0	Regresión y correlación polinómica entre la cobertura-	
		sobrevivencia - sin maleza	66
Gráfico 1	1	Regresión y correlación entre el número de flores-	
		sobrevivencia - sin maleza	72
Gráfico 1	2	Regresión y correlación entre el número de bayas-	
		sobrevivencia - sin maleza	76
Gráfico 1	3	Biplot del análisis AMMI para el número de tallos de 56	
		genotipos de papas, evaluados en presencia de las	
		malezas en 3 ambientes durante el periodo diciembre	
		2010 a abril 2012	83
Gráfico 1	4	Biplot del análisis AMMI para el número de tallos de 56	
		genotipos de papas, evaluados sin la presencia de las	
		malezas en 3 ambientes durante el periodo diciembre	
		2010 a abril 2012	88
Gráfico 1	5	Número de tubérculos de los 15 grupos genéticos de	
		papa y 1 grupo correspondiente al material control -	
		Ambiente Huancayo	92
Gráfico 1	6	Número de tubérculos de los 15 grupos genéticos de	

	papa y 1 grupo correspondiente al material control –	
	Huánuco	93
Gráfico 17	Número de tubérculos de los 15 grupos genéticos de	
	papa y 1 grupo correspondiente al material control -	
	Ambiente Yauyos	94
Gráfico 18	EL grupo Araq con su respectiva proyección.	
	(Promedio de 8 genotipos sembrados con tubérculos),	
	ambiente de Huancayo con la presencia de las	
	malezas	96
Gráfico 19	Proyección de un híbrido proveniente de la cruza de	
	un S. goniocalyx por un S. chiquidenum. (Promedio de	
	9 clones sembrados por esquejes), ambiente de	
	Huancayo con presencia de malezas	96
Gráfico 20	Proyección de los materiales genéticos del grupo	
	mejorado B1C5 (Promedio de 3 clones sembrados	
	con tubérculos), ambiente de Huancayo con presencia	
	de malezas	97
Gráfico 21	Proyección del grupo de las papas nativas y	
	mejoradas. (Promedio de 2 variedades con siembra	
	directa de semilla sexual bayas), ambiente de	
	Huancayo con presencia de malezas	98
Gráfico 22	El grupo Araq con su respectiva proyección. (Promedio	
	de 8 genotipos por siembra de tubérculos), ambiente	
	de Huancayo sin malezas	99
Gráfico 23	Proyección de un hibrido proveniente de la cruza de un	
	S. phureja por un S. chiquidenum. (Promedio de 12	
	híbridos propagados por esquejes), ambiente de	
	Huancayo sin malezas	100
Gráfico 24	Proyección del grupo de las papas nativas y	
	mejoradas. (Promedio de 2 variedades con siembra	
	directa de semilla sexual atreves de bayas), ambiente	
	de Huancayo sin malezas	100
Gráfico 25	Proyección de los materiales genéticos del grupo	

	mejorado B1C5 (Promedio de 3 clones sembrados	
	con tubérculos), ambiente de Huánuco con presencia	
	de malezas	101
Gráfico 26	EL grupo Araq con su respectiva proyección.	
	(Promedio de 8 genotipos con siembra de tubérculos),	
	ambiente de Huánuco con malezas	102
Gráfico 27	Proyección del grupo de las papas nativas. (Promedio	
	de 2 variedades con siembra directa de semilla sexual	
	atreves de bayas), ambiente de Huánuco sin malezas	103
Gráfico 28	Proyección de los materiales genéticos del grupo	
	mejorado B1C5 (Promedio de 3 clones sembrados	
	con tubérculos), ambiente de Huánuco sin malezas	103
Gráfico 29	El grupo Araq con su respectiva proyección (Promedio	
	de 8 genotipos sembrados con tubérculos), ambiente	
	de Huánuco sin malezas	104
Gráfico 30	El grupo de las nativas con su respectiva proyección.	
	(Promedio de 2 genotipos con siembra directa de	
	bayas), ambiente de Huánuco sin malezas	105
Gráfico 31	El grupo Araq con su respectiva proyección. (Promedio	
	de 8 genotipos sembrados con tubérculos), ambiente	
	de Yauyos con malezas	105
Gráfico 32	Proyección de los materiales genéticos del grupo	
	mejorado B1C5 (Promedio de 3 clones sembrados	
	con tubérculos), ambiente de Yauyos con la presencia	
	de malezas	106
Gráfico 33	Proyección de híbridos proveniente de la cruza de un	
	S. phureja por un S. cajamarquence. (1 híbridos	
	propagados por esquejes), ambiente de Yauyos con	
	malezas	107
Gráfico 34	El grupo Araq con su respectiva proyección. (Promedio	
	de 8 genotipos sembrados con tubérculos), ambiente	
	de Yauyos sin malezas	107
Gráfico 35	Proyección de los materiales genéticos del grupo	

	mejorado B1C5 (Promedio de 3 clones sembrados	
	con tubérculos), ambiente de Yauyos con la presencia	
	de malezas	108
Gráfico 36	Proyección de un híbrido resultado de una doble	
	hibridación por un <i>S. cajamarcanse</i> (1 híbridos	
	propagados por esquejes), ambiente de Yauyos con	
	malezas	109
Gráfico 37	El grupo de las nativas con su respectiva proyección.	
	(Promedio de 2 genotipos con siembra directa de	
	bayas), ambiente de Huánuco sin malezas	110
Gráfico 38	Índices de Margalef - riqueza específica, de los tres	
	ambientes	111
Gráfico 39	Comparación de Dominancia de especies entre	
	evaluaciones en el ambiente de Huancayo	112
Gráfico 40	Comparación de Dominancia de especies entre	
	evaluaciones en el ambiente de Huánuco	114
Gráfico 41	Comparación de Dominancia de especies entre	
	evaluaciones en el ambiente de Yauyos	115

PRESENTACIÓN

América Latina: Desarrollo de capacidad multi-país en cumplimiento del Protocolo de Cartagena en Bioseguridad (COLOMBIA, PERU, COSTA RICA, BRASIL)

El presente trabajo de tesis en su primera fase, es parte del Proyecto "Generación de una línea base de información sobre la capacidad de sobrevivencia y naturalización de poblaciones hibridas con caracteres de resistencia posterior al flujo de genes entre papas mejoradas, nativas y parientes silvestres". Investigaciones en papa han mostrado que el flujo de genes entre especies cultivadas y silvestres puede ocurrir a lo largo del tiempo. El flujo de genes entre cultivares mejorados fértiles, cultivos tradicionales y papas silvestres es biológicamente posible dado que las barreras interespecíficas son permeables en el genoma de la papa, y que en varios lugares papas mejoradas co-existen con nativas y silvestres. Sin embargo, no se sabe mucho sobre las condiciones y escenarios que pueden llevar a la naturalización exitosa posterior al flujo de genes. La capacidad de sobrevivencia de un hibrido es una función de su capacidad de competir con la flora endógena (poblaciones maleza) y de adaptación al ambiente (clima, suelo, manejo). El tizón tardío es una de las enfermedades más devastadoras que afectan el cultivo de la papa a nivel mundial. La transgénesis es una opción real para lograr resistencia a ella y se puede especular que tal resistencia provee una ventaja para la sobrevivencia y el establecimiento. Este sub-proyecto explora tres fenómenos. Primero, la dinámica de poblaciones en diferentes ambientes. Segundo, prácticas de los agricultores tradicionales en los Andes, específicamente el uso activo o pasivo de semilla botánica en el centro de origen de la papa. Tercero, se puede investigar el tema mediante el estudio de poblaciones existentes que son el resultado (histórico) de una probable naturalización. Es el caso de papas malezas con caracteres similares a las cultivadas (Arag Papa). Este proyecto se lleva a cabo bajo en el Centro Internacional de la papa, dirigido por Ph. D. Stef De Haan.

RESUMEN

El presente trabajo de investigación se llevara a cabo en las instalaciones del Centro Internacional de la Papa – Huancayo, en la Estación Experimental de la Universidad de Huánuco y en el Centro Experimental de la ONG Valle Grande del anexo de Llapay (distrito de Laraos, Yauyos) siguiendo un transecto Este – Oeste. El problema en estudio es la capacidad de establecimiento y sobrevivencia (inicial) de genotipos específicos como "papa maleza", después de un hipotético flujo de genes. Un tema de importancia que corresponde a las prioridades de bioseguridad para el Perú que atiende el proyecto regional LAC Biosafety (http://www.lacbio.org/). Teniendo en consideración los siguientes objetivos: a). Determinar el establecimiento y sobrevivencia (competencia) de papas híbridas, papas silvestres, papas semi-cultivadas (grupo Araq), material avanzado con resistencia a *Phytophthora infestans*, y variedades control en un medio natural de tres ambientes agroecológicos y b). Determinar los factores biológicos (genotípicos) y ambientales que determinan la capacidad de establecimiento y sobrevivencia.

El proyecto específicamente abordará la contribución de la resistencia a *Phytophthora infestans*, los mecanismos de reproducción sexual y vegetativa, y el efecto del ambiente (flora pionera, clima, suelo) para la supervivencia de los híbridos (papas cultivadas por silvestres), papas semi-cultivadas (grupo Araq), papas nativas, material avanzado con resistencia a *Phytophthora infestans* y variedades control en el medio natural. El estudio considera los efectos de interacción genotipo por medio ambiente. Un factor específico que se considera se encuentran entre los más importantes para la productividad de la papa y una prioridad para los programa mundiales de mejoramiento: resistencia al tizón tardío *(Phytophthora infestans)*. Los tratamientos fueron introducidos bajo el Diseño de Bloques Completamente Randomizado, con 56 tratamientos y 3 repeticiones. Las observaciones fueron: Número de tallos (plantas

sobrevivientes), Cobertura foliar, Altura de planta, Número de bayas, Número flores, Número de tubérculos y Malezas. Las evaluaciones fueron periódicas por 14 meses. Realizados los análisis estadísticos respectivos se obtuvieron los siguientes resultados:

Con el análisis AMMI se determinó que para la sobrevivencia de los diversos grupos de papas, la presencia de malezas y su amplia competitividad, fueron determinantes en la primera etapa, es decir en los tres ambientes existió mayor sobrevivencia en la repetición sin malezas con un promedio general de 56.46 tallos por accesión mientras que en la repetición con malezas el promedio fue 41.05 tallos de papa por accesión, también podemos apreciar que la mayor variabilidad está dada por la amplia diversidad del material genético utilizada en el experimento . Es más los grupos establecidos y sobrevivientes fueron: en el ambiente Huancayo el grupo de los híbridos provenientes de las cruzas (2x hyb x phu, phu x cajm, stn x chq, 2x hyb x chq y gon x chq), y en el ambiente de Huánuco los grupos que sobrevivieron fueron el grupo Arag, el material mejorado B1C5 y el material control y en el ambiente de Yauyos los mejores grupos fueron el grupo Araq, las papas nativas (amarillas tumbay sembrado en bayas), y un híbrido de la cruza (stn x chq). Mientras que, los grupos sobrevivientes sin la competencia de las malezas fueron: en el ambiente de Huancayo el grupo de los híbridos provenientes de las cruzas (stn x chq, 2x hyb x pur, stn x phu, phu x chq, 2x hyb x chq, gon x chq, 2x hyb x caj y stn x caj), el grupo Araq y el material control, en el ambiente de Huánuco el grupo B1C5, el grupo Araq, un hibrido (stn x phu) y el material control y en el ambiente de Yauyos el grupo de las Araq, el grupo de los Híbridos provenientes de la cruza (gon x chq, stn x chq, phu x chq) y una papa nativa.

Dentro de los grupos sobrevivientes se observó a las accesiones con adaptación general, en la repetición sin maleza la accesión 39 (399095.106) en los ambiente Huancayo y Huánuco y las accesiones 42 (Araq 3), 50 (Puka ñahui), 41 (Araq 2) y 44 (Araq 5) en los ambientes Huancayo y Yauyos. Mientras que, en el tratamiento con malezas la accesión 39 (399095.106) en los ambientes Huancayo y Huánuco y la accesión 42 (Araq 3) en los ambientes de Yauyos y Huánuco.

Por otro lado las malezas juegan un papel importante en la sobrevivencia. En el ambiente de Huancayo las malezas establecidas dominantes hasta los catorce

meses de evaluación fueron: *Malva silvestres* (malva) con 0.030533 y *Verónica pérsica* (hierba gallinera) 0.027661, en el ambiente de Huánuco fueron *Pennisetum clandestinum* (kikuyu) con 0.18239, *Digitaria sanguinalis* (pata de gallo) con 0.11851 y en el ambiente de Yauyos fue *Erodium cicutarium* (aguja aguja) con 0.17373. Estas son las malezas que están aumentando en número y desplazando a las demás, por su habilidad de competencia por nutrientes, agua y especio. A medida que una maleza se hace más dominante el índice de Margalef o de riqueza específica va disminuyendo. Es decir incremente el número de individuos de una determinada especie pero disminuyen el número de especies.

En la regresión y correlación polinomica simple la sobrevivencia se correlacionó positivamente con los componentes de rendimiento: cobertura foliar y en algunas evaluaciones con el número de flores lo que indica, que son los componentes de mayor importancia en la sobrevivencia. Muy independiente de la época de evaluación (época de estiaje y época de lluvia).

INTRODUCCIÓN

La Papa (*Solanum tuberosum* L.), originaria del Perú, por poseer aproximadamente 3000 variedades de papa, además de haberse identificado 91 parientes silvestres, número superior a todos los países en américa (Hijmans, et al, 2007). Es uno de los cultivos alimenticios más importantes de la región Andina y ocupa el tercer lugar en el mundo en importancia alimenticia, después del trigo y el arroz. La gran difusión de esta especie tuberífera, que se siembra en más de 120 países, se debe principalmente a su amplia adaptabilidad a los diferentes climas, excelente rendimiento y alto valor nutritivo (Burton, 1989).

El cultivo de la Papa es vulnerable al ataque de un gran número de plagas. Entre las más comunes tenemos a Phytophthora infestans, Alternaria solani, Rhizoctonia solani, Synchytrium endobioticum, Spongospora subterranea, Fusarium spp., Tecaphora solani, Ralstonia solanacearum, Pectobacterium carotovorum y atrosepticum, Virus (APLV, APMV, PVY, PVX, PLRV, PYVV), Globodera padilla, **Premnotrypes** Phtorimaea operculella. spp., Symmestrichema tangolias, Tecia solanivora, Frankliniella spp., Epitrix spp., etc. (Pérez; Forbes, 2011) a pesar que el fitomejoramiento convencional (selección recurrente) avanza mucho en la resistencias a la rancha (Phytophthora infestans), pero se observa muy poco con respecto a buscar resistencias a plagas, es por ello que, se ve como una alternativas a la transgénesis dando lugar a un debate muy fuerte sobre esta tecnología centrándose en tres puntos. 1. La transgénesis podría afectar la salud, 2. La transgénesis podría causar problemas a los países centros de origen, con un posible evento de flujo de genes entre plantas transgénicas y parientes silvestres (contaminación genética) y dar lugar a plantas malezas y 3. La transgénesis podría crear conflictos con respecto a los derechos de propiedad (famosas patentes).

En el Perú se creó una ley de moratoria por alrededor de 10 años, con el propósito de proteger los recursos genéticos nativos, esta moratoria pretende fortalecer capacidades, sin esperar cumplir el tiempo establecido, por lo contrario dar respuestas acertadas ante esta eventualidad.

Entonces si no se logra recaudar toda la información necesaria, muchos de los recursos fitogenéticos podrían ser afectados, investigaciones anteriores muestran que el flujo de polen (transgenes) de variedades de papa potencialmente transgénicas se pueden cruzar con familiares nativos y silvestres que se encuentran en proximidad a los cultivos transgénicos dando lugar a materiales genéticos híbridos (Celis et al., 2004; Scurrah et al, 2008). Por tanto el centro internacional de la papa inmersos en la problemática de evaluar los posibles riesgos de la naturalización de la papa con nuevas características propone estudiar y posteriormente "Generar una línea base de información sobre la capacidad de sobrevivencia de poblaciones hibridas con caracteres de resistencia posterior al flujo de genes entre papas mejoradas,

Por tanto, el propósito de esta investigación es recaudar y brindar información para la toma de decisiones en el manejo de semilla genéticamente modificados, por tal motivo los objetivos de este trabajo fueron:

nativas y parientes silvestres". Es, en este contexto que, este proyecto de

investigación se encuentra en la primera fase de evaluación.

- 1. Determinar el establecimiento y sobrevivencia (competencia) de papas híbridas, papas silvestres, papas semi-cultivadas (grupo Araq), material avanzado con resistencia a *Phytophthora infestans*, y variedades control en un medio natural de tres ambientes agroecológicos.
- 2. Determinar los factores biológicos (genotípicos) y ambientales que determinan la capacidad de establecimiento y sobrevivencia.